Bootstrapping continuous-time autoregressive processes
نویسندگان
چکیده
We develop a bootstrap procedure for Lévy-driven continuous-time autoregressive (CAR) processes observed at discrete regularly-spaced times. It is well known that a regularly sampled stationary Ornstein–Uhlenbeck process [i.e. a CAR(1) process] has a discrete-time autoregressive representation with i.i.d. noise. Based on this representation a simple bootstrap procedure can be found. Since regularly sampled CAR processes of higher order satisfy ARMA equations with uncorrelated (but in general dependent) noise, a more general bootstrap procedure is needed for such processes. We consider statistics depending on observations of the CAR process at the uniformly-spaced times, together with auxiliary observations on a finer grid, which give approximations to the derivatives of the continuous time process. This enables us to approximate the state-vector of the CAR process which is a vector-valued CAR(1) process, and whose sampled version, on the uniformly-spaced grid, is a multivariate AR(1) process with i.i.d. noise. This leads to a valid residual-based bootstrap which allows replication of CAR(p) processes on the underlying discrete time grid. We show that this approach is consistent for empirical autocovariances and autocorrelations.
منابع مشابه
The notion of ψ - weak dependence and its applications to bootstrapping time series ∗
We give an introduction to a notion of weak dependence which is more general than mixing and allows to treat for example processes driven by discrete innovations as they appear with time series bootstrap. As a typical example, we analyze autoregressive processes and their bootstrap analogues in detail and show how weak dependence can be easily derived from a contraction property of the process....
متن کاملInconsistency of Bootstrap for Nonstationary, Vector Autoregressive Processes
Using a nonstationary, bivariate autoregressive process with iid innovations, this paper shows that the bootstrap vector autoregressive causality test is inconsistent in general in the sense that its weak limit is di¤erent from that of the original causality test.
متن کاملBootstrapping INAR Models
Integer-valued autoregressive (INAR) time series form a very useful class of processes suitable to model time series of counts. In the common formulation of Du and Li (1991, JTSA), INAR models of order p share the autocorrelation structure with classical autoregressive time series. This fact allows to estimate the INAR coefficients, e.g., by Yule-Walker estimators. However, contrary to the AR c...
متن کاملThe Local Bootstrap for Markov processes
A nonparametric bootstrap procedure is proposed for stochastic processes which follow a general autoregressive structure. The procedure generates bootstrap replicates by locally resampling the original set of observations reproducing automatically its dependence properties. It avoids an initial nonparametric estimation of process characteristics in order to generate the pseudo-time series and t...
متن کاملA Sieve Bootstrap approach to constructing Prediction Intervals for Long Memory Time series
This paper is concerned with the construction of bootstrap prediction intervals for autoregressive fractionally integrated movingaverage processes which is a special class of long memory time series. For linear short-range dependent time series, the bootstrap based prediction interval is a good nonparametric alternative to those constructed under parameter assumptions. In the long memory case, ...
متن کامل